>> scientific-skills/qutip
QuTiP: Quantum Toolbox in Python
Overview
QuTiP provides comprehensive tools for simulating and analyzing quantum mechanical systems. It handles both closed (unitary) and open (dissipative) quantum systems with multiple solvers optimized for different scenarios.
Installation
uv pip install qutip
Optional packages for additional functionality:
# Quantum information processing (circuits, gates)
uv pip install qutip-qip
# Quantum trajectory viewer
uv pip install qutip-qtrl
Quick Start
from qutip import *
import numpy as np
import matplotlib.pyplot as plt
# Create quantum state
psi = basis(2, 0) # |0⟩ state
# Create operator
H = sigmaz() # Hamiltonian
# Time evolution
tlist = np.linspace(0, 10, 100)
result = sesolve(H, psi, tlist, e_ops=[sigmaz()])
# Plot results
plt.plot(tlist, result.expect[0])
plt.xlabel('Time')
plt.ylabel('⟨σz⟩')
plt.show()
Core Capabilities
1. Quantum Objects and States
Create and manipulate quantum states and operators:
# States
psi = basis(N, n) # Fock state |n⟩
psi = coherent(N, alpha) # Coherent state |α⟩
rho = thermal_dm(N, n_avg) # Thermal density matrix
# Operators
a = destroy(N) # Annihilation operator
H = num(N) # Number operator
sx, sy, sz = sigmax(), sigmay(), sigmaz() # Pauli matrices
# Composite systems
psi_AB = tensor(psi_A, psi_B) # Tensor product
See references/core_concepts.md for comprehensive coverage of quantum objects, states, operators, and tensor products.
2. Time Evolution and Dynamics
Multiple solvers for different scenarios:
# Closed systems (unitary evolution)
result = sesolve(H, psi0, tlist, e_ops=[num(N)])
# Open systems (dissipation)
c_ops = [np.sqrt(0.1) * destroy(N)] # Collapse operators
result = mesolve(H, psi0, tlist, c_ops, e_ops=[num(N)])
# Quantum trajectories (Monte Carlo)
result = mcsolve(H, psi0, tlist, c_ops, ntraj=500, e_ops=[num(N)])
Solver selection guide:
sesolve: Pure states, unitary evolutionmesolve: Mixed states, dissipation, general open systemsmcsolve: Quantum jumps, photon counting, individual trajectoriesbrmesolve: Weak system-bath couplingfmmesolve: Time-periodic Hamiltonians (Floquet)
See references/time_evolution.md for detailed solver documentation, time-dependent Hamiltonians, and advanced options.
3. Analysis and Measurement
Compute physical quantities:
# Expectation values
n_avg = expect(num(N), psi)
# Entropy measures
S = entropy_vn(rho) # Von Neumann entropy
C = concurrence(rho) # Entanglement (two qubits)
# Fidelity and distance
F = fidelity(psi1, psi2)
D = tracedist(rho1, rho2)
# Correlation functions
corr = correlation_2op_1t(H, rho0, taulist, c_ops, A, B)
w, S = spectrum_correlation_fft(taulist, corr)
# Steady states
rho_ss = steadystate(H, c_ops)
See references/analysis.md for entropy, fidelity, measurements, correlation functions, and steady state calculations.
4. Visualization
Visualize quantum states and dynamics:
# Bloch sphere
b = Bloch()
b.add_states(psi)
b.show()
# Wigner function (phase space)
xvec = np.linspace(-5, 5, 200)
W = wigner(psi, xvec, xvec)
plt.contourf(xvec, xvec, W, 100, cmap='RdBu')
# Fock distribution
plot_fock_distribution(psi)
# Matrix visualization
hinton(rho) # Hinton diagram
matrix_histogram(H.full()) # 3D bars
See references/visualization.md for Bloch sphere animations, Wigner functions, Q-functions, and matrix visualizations.
5. Advanced Methods
Specialized techniques for complex scenarios:
# Floquet theory (periodic Hamiltonians)
T = 2 * np.pi / w_drive
f_modes, f_energies = floquet_modes(H, T, args)
result = fmmesolve(H, psi0, tlist, c_ops, T=T, args=args)
# HEOM (non-Markovian, strong coupling)
from qutip.nonmarkov.heom import HEOMSolver, BosonicBath
bath = BosonicBath(Q, ck_real, vk_real)
hsolver = HEOMSolver(H_sys, [bath], max_depth=5)
result = hsolver.run(rho0, tlist)
# Permutational invariance (identical particles)
psi = dicke(N, j, m) # Dicke states
Jz = jspin(N, 'z') # Collective operators
See references/advanced.md for Floquet theory, HEOM, permutational invariance, stochastic solvers, superoperators, and performance optimization.
Common Workflows
Simulating a Damped Harmonic Oscillator
# System parameters
N = 20 # Hilbert space dimension
omega = 1.0 # Oscillator frequency
kappa = 0.1 # Decay rate
# Hamiltonian and collapse operators
H = omega * num(N)
c_ops = [np.sqrt(kappa) * destroy(N)]
# Initial state
psi0 = coherent(N, 3.0)
# Time evolution
tlist = np.linspace(0, 50, 200)
result = mesolve(H, psi0, tlist, c_ops, e_ops=[num(N)])
# Visualize
plt.plot(tlist, result.expect[0])
plt.xlabel('Time')
plt.ylabel('⟨n⟩')
plt.title('Photon Number Decay')
plt.show()
Two-Qubit Entanglement Dynamics
# Create Bell state
psi0 = bell_state('00')
# Local dephasing on each qubit
gamma = 0.1
c_ops = [
np.sqrt(gamma) * tensor(sigmaz(), qeye(2)),
np.sqrt(gamma) * tensor(qeye(2), sigmaz())
]
# Track entanglement
def compute_concurrence(t, psi):
rho = ket2dm(psi) if psi.isket else psi
return concurrence(rho)
tlist = np.linspace(0, 10, 100)
result = mesolve(qeye([2, 2]), psi0, tlist, c_ops)
# Compute concurrence for each state
C_t = [concurrence(state.proj()) for state in result.states]
plt.plot(tlist, C_t)
plt.xlabel('Time')
plt.ylabel('Concurrence')
plt.title('Entanglement Decay')
plt.show()
Jaynes-Cummings Model
# System parameters
N = 10 # Cavity Fock space
wc = 1.0 # Cavity frequency
wa = 1.0 # Atom frequency
g = 0.05 # Coupling strength
# Operators
a = tensor(destroy(N), qeye(2)) # Cavity
sm = tensor(qeye(N), sigmam()) # Atom
# Hamiltonian (RWA)
H = wc * a.dag() * a + wa * sm.dag() * sm + g * (a.dag() * sm + a * sm.dag())
# Initial state: cavity in coherent state, atom in ground state
psi0 = tensor(coherent(N, 2), basis(2, 0))
# Dissipation
kappa = 0.1 # Cavity decay
gamma = 0.05 # Atomic decay
c_ops = [np.sqrt(kappa) * a, np.sqrt(gamma) * sm]
# Observables
n_cav = a.dag() * a
n_atom = sm.dag() * sm
# Evolve
tlist = np.linspace(0, 50, 200)
result = mesolve(H, psi0, tlist, c_ops, e_ops=[n_cav, n_atom])
# Plot
fig, axes = plt.subplots(2, 1, figsize=(8, 6), sharex=True)
axes[0].plot(tlist, result.expect[0])
axes[0].set_ylabel('⟨n_cavity⟩')
axes[1].plot(tlist, result.expect[1])
axes[1].set_ylabel('⟨n_atom⟩')
axes[1].set_xlabel('Time')
plt.tight_layout()
plt.show()
Tips for Efficient Simulations
- Truncate Hilbert spaces: Use smallest dimension that captures dynamics
- Choose appropriate solver:
sesolvefor pure states is faster thanmesolve - Time-dependent terms: String format (e.g.,
'cos(w*t)') is fastest - Store only needed data: Use
e_opsinstead of storing all states - Adjust tolerances: Balance accuracy with computation time via
Options - Parallel trajectories:
mcsolveautomatically uses multiple CPUs - Check convergence: Vary
ntraj, Hilbert space size, and tolerances
Troubleshooting
Memory issues: Reduce Hilbert space dimension, use store_final_state option, or consider Krylov methods
Slow simulations: Use string-based time-dependence, increase tolerances slightly, or try method='bdf' for stiff problems
Numerical instabilities: Decrease time steps (nsteps option), increase tolerances, or check Hamiltonian/operators are properly defined
Import errors: Ensure QuTiP is installed correctly; quantum gates require qutip-qip package
References
This skill includes detailed reference documentation:
references/core_concepts.md: Quantum objects, states, operators, tensor products, composite systemsreferences/time_evolution.md: All solvers (sesolve, mesolve, mcsolve, brmesolve, etc.), time-dependent Hamiltonians, solver optionsreferences/visualization.md: Bloch sphere, Wigner functions, Q-functions, Fock distributions, matrix plotsreferences/analysis.md: Expectation values, entropy, fidelity, entanglement measures, correlation functions, steady statesreferences/advanced.md: Floquet theory, HEOM, permutational invariance, stochastic methods, superoperators, performance tips
External Resources
- Documentation: https://qutip.readthedocs.io/
- Tutorials: https://qutip.org/qutip-tutorials/
- API Reference: https://qutip.readthedocs.io/en/stable/apidoc/apidoc.html
- GitHub: https://github.com/qutip/qutip
