>> scientific-skills/qiskit
Qiskit
Overview
Qiskit is the world's most popular open-source quantum computing framework with 13M+ downloads. Build quantum circuits, optimize for hardware, execute on simulators or real quantum computers, and analyze results. Supports IBM Quantum (100+ qubit systems), IonQ, Amazon Braket, and other providers.
Key Features:
- 83x faster transpilation than competitors
- 29% fewer two-qubit gates in optimized circuits
- Backend-agnostic execution (local simulators or cloud hardware)
- Comprehensive algorithm libraries for optimization, chemistry, and ML
Quick Start
Installation
uv pip install qiskit
uv pip install "qiskit[visualization]" matplotlib
First Circuit
from qiskit import QuantumCircuit
from qiskit.primitives import StatevectorSampler
# Create Bell state (entangled qubits)
qc = QuantumCircuit(2)
qc.h(0) # Hadamard on qubit 0
qc.cx(0, 1) # CNOT from qubit 0 to 1
qc.measure_all() # Measure both qubits
# Run locally
sampler = StatevectorSampler()
result = sampler.run([qc], shots=1024).result()
counts = result[0].data.meas.get_counts()
print(counts) # {'00': ~512, '11': ~512}
Visualization
from qiskit.visualization import plot_histogram
qc.draw('mpl') # Circuit diagram
plot_histogram(counts) # Results histogram
Core Capabilities
1. Setup and Installation
For detailed installation, authentication, and IBM Quantum account setup:
- See
references/setup.md
Topics covered:
- Installation with uv
- Python environment setup
- IBM Quantum account and API token configuration
- Local vs. cloud execution
2. Building Quantum Circuits
For constructing quantum circuits with gates, measurements, and composition:
- See
references/circuits.md
Topics covered:
- Creating circuits with QuantumCircuit
- Single-qubit gates (H, X, Y, Z, rotations, phase gates)
- Multi-qubit gates (CNOT, SWAP, Toffoli)
- Measurements and barriers
- Circuit composition and properties
- Parameterized circuits for variational algorithms
3. Primitives (Sampler and Estimator)
For executing quantum circuits and computing results:
- See
references/primitives.md
Topics covered:
- Sampler: Get bitstring measurements and probability distributions
- Estimator: Compute expectation values of observables
- V2 interface (StatevectorSampler, StatevectorEstimator)
- IBM Quantum Runtime primitives for hardware
- Sessions and Batch modes
- Parameter binding
4. Transpilation and Optimization
For optimizing circuits and preparing for hardware execution:
- See
references/transpilation.md
Topics covered:
- Why transpilation is necessary
- Optimization levels (0-3)
- Six transpilation stages (init, layout, routing, translation, optimization, scheduling)
- Advanced features (virtual permutation elision, gate cancellation)
- Common parameters (initial_layout, approximation_degree, seed)
- Best practices for efficient circuits
5. Visualization
For displaying circuits, results, and quantum states:
- See
references/visualization.md
Topics covered:
- Circuit drawings (text, matplotlib, LaTeX)
- Result histograms
- Quantum state visualization (Bloch sphere, state city, QSphere)
- Backend topology and error maps
- Customization and styling
- Saving publication-quality figures
6. Hardware Backends
For running on simulators and real quantum computers:
- See
references/backends.md
Topics covered:
- IBM Quantum backends and authentication
- Backend properties and status
- Running on real hardware with Runtime primitives
- Job management and queuing
- Session mode (iterative algorithms)
- Batch mode (parallel jobs)
- Local simulators (StatevectorSampler, Aer)
- Third-party providers (IonQ, Amazon Braket)
- Error mitigation strategies
7. Qiskit Patterns Workflow
For implementing the four-step quantum computing workflow:
- See
references/patterns.md
Topics covered:
- Map: Translate problems to quantum circuits
- Optimize: Transpile for hardware
- Execute: Run with primitives
- Post-process: Extract and analyze results
- Complete VQE example
- Session vs. Batch execution
- Common workflow patterns
8. Quantum Algorithms and Applications
For implementing specific quantum algorithms:
- See
references/algorithms.md
Topics covered:
- Optimization: VQE, QAOA, Grover's algorithm
- Chemistry: Molecular ground states, excited states, Hamiltonians
- Machine Learning: Quantum kernels, VQC, QNN
- Algorithm libraries: Qiskit Nature, Qiskit ML, Qiskit Optimization
- Physics simulations and benchmarking
Workflow Decision Guide
If you need to:
- Install Qiskit or set up IBM Quantum account →
references/setup.md - Build a new quantum circuit →
references/circuits.md - Understand gates and circuit operations →
references/circuits.md - Run circuits and get measurements →
references/primitives.md - Compute expectation values →
references/primitives.md - Optimize circuits for hardware →
references/transpilation.md - Visualize circuits or results →
references/visualization.md - Execute on IBM Quantum hardware →
references/backends.md - Connect to third-party providers →
references/backends.md - Implement end-to-end quantum workflow →
references/patterns.md - Build specific algorithm (VQE, QAOA, etc.) →
references/algorithms.md - Solve chemistry or optimization problems →
references/algorithms.md
Best Practices
Development Workflow
-
Start with simulators: Test locally before using hardware
from qiskit.primitives import StatevectorSampler sampler = StatevectorSampler() -
Always transpile: Optimize circuits before execution
from qiskit import transpile qc_optimized = transpile(qc, backend=backend, optimization_level=3) -
Use appropriate primitives:
- Sampler for bitstrings (optimization algorithms)
- Estimator for expectation values (chemistry, physics)
-
Choose execution mode:
- Session: Iterative algorithms (VQE, QAOA)
- Batch: Independent parallel jobs
- Single job: One-off experiments
Performance Optimization
- Use optimization_level=3 for production
- Minimize two-qubit gates (major error source)
- Test with noisy simulators before hardware
- Save and reuse transpiled circuits
- Monitor convergence in variational algorithms
Hardware Execution
- Check backend status before submitting
- Use least_busy() for testing
- Save job IDs for later retrieval
- Apply error mitigation (resilience_level)
- Start with fewer shots, increase for final runs
Common Patterns
Pattern 1: Simple Circuit Execution
from qiskit import QuantumCircuit, transpile
from qiskit.primitives import StatevectorSampler
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
qc.measure_all()
sampler = StatevectorSampler()
result = sampler.run([qc], shots=1024).result()
counts = result[0].data.meas.get_counts()
Pattern 2: Hardware Execution with Transpilation
from qiskit_ibm_runtime import QiskitRuntimeService, SamplerV2 as Sampler
from qiskit import transpile
service = QiskitRuntimeService()
backend = service.backend("ibm_brisbane")
qc_optimized = transpile(qc, backend=backend, optimization_level=3)
sampler = Sampler(backend)
job = sampler.run([qc_optimized], shots=1024)
result = job.result()
Pattern 3: Variational Algorithm (VQE)
from qiskit_ibm_runtime import Session, EstimatorV2 as Estimator
from scipy.optimize import minimize
with Session(backend=backend) as session:
estimator = Estimator(session=session)
def cost_function(params):
bound_qc = ansatz.assign_parameters(params)
qc_isa = transpile(bound_qc, backend=backend)
result = estimator.run([(qc_isa, hamiltonian)]).result()
return result[0].data.evs
result = minimize(cost_function, initial_params, method='COBYLA')
Additional Resources
- Official Docs: https://quantum.ibm.com/docs
- Qiskit Textbook: https://qiskit.org/learn
- API Reference: https://docs.quantum.ibm.com/api/qiskit
- Patterns Guide: https://quantum.cloud.ibm.com/docs/en/guides/intro-to-patterns
