Good AI Tools

>> scientific-skills/pennylane

stars: 1935
forks: 230
watches: 1935
last updated: 2025-12-10 15:59:01

PennyLane

Overview

PennyLane is a quantum computing library that enables training quantum computers like neural networks. It provides automatic differentiation of quantum circuits, device-independent programming, and seamless integration with classical machine learning frameworks.

Installation

Install using uv:

uv pip install pennylane

For quantum hardware access, install device plugins:

# IBM Quantum
uv pip install pennylane-qiskit

# Amazon Braket
uv pip install amazon-braket-pennylane-plugin

# Google Cirq
uv pip install pennylane-cirq

# Rigetti Forest
uv pip install pennylane-rigetti

# IonQ
uv pip install pennylane-ionq

Quick Start

Build a quantum circuit and optimize its parameters:

import pennylane as qml
from pennylane import numpy as np

# Create device
dev = qml.device('default.qubit', wires=2)

# Define quantum circuit
@qml.qnode(dev)
def circuit(params):
    qml.RX(params[0], wires=0)
    qml.RY(params[1], wires=1)
    qml.CNOT(wires=[0, 1])
    return qml.expval(qml.PauliZ(0))

# Optimize parameters
opt = qml.GradientDescentOptimizer(stepsize=0.1)
params = np.array([0.1, 0.2], requires_grad=True)

for i in range(100):
    params = opt.step(circuit, params)

Core Capabilities

1. Quantum Circuit Construction

Build circuits with gates, measurements, and state preparation. See references/quantum_circuits.md for:

  • Single and multi-qubit gates
  • Controlled operations and conditional logic
  • Mid-circuit measurements and adaptive circuits
  • Various measurement types (expectation, probability, samples)
  • Circuit inspection and debugging

2. Quantum Machine Learning

Create hybrid quantum-classical models. See references/quantum_ml.md for:

  • Integration with PyTorch, JAX, TensorFlow
  • Quantum neural networks and variational classifiers
  • Data encoding strategies (angle, amplitude, basis, IQP)
  • Training hybrid models with backpropagation
  • Transfer learning with quantum circuits

3. Quantum Chemistry

Simulate molecules and compute ground state energies. See references/quantum_chemistry.md for:

  • Molecular Hamiltonian generation
  • Variational Quantum Eigensolver (VQE)
  • UCCSD ansatz for chemistry
  • Geometry optimization and dissociation curves
  • Molecular property calculations

4. Device Management

Execute on simulators or quantum hardware. See references/devices_backends.md for:

  • Built-in simulators (default.qubit, lightning.qubit, default.mixed)
  • Hardware plugins (IBM, Amazon Braket, Google, Rigetti, IonQ)
  • Device selection and configuration
  • Performance optimization and caching
  • GPU acceleration and JIT compilation

5. Optimization

Train quantum circuits with various optimizers. See references/optimization.md for:

  • Built-in optimizers (Adam, gradient descent, momentum, RMSProp)
  • Gradient computation methods (backprop, parameter-shift, adjoint)
  • Variational algorithms (VQE, QAOA)
  • Training strategies (learning rate schedules, mini-batches)
  • Handling barren plateaus and local minima

6. Advanced Features

Leverage templates, transforms, and compilation. See references/advanced_features.md for:

  • Circuit templates and layers
  • Transforms and circuit optimization
  • Pulse-level programming
  • Catalyst JIT compilation
  • Noise models and error mitigation
  • Resource estimation

Common Workflows

Train a Variational Classifier

# 1. Define ansatz
@qml.qnode(dev)
def classifier(x, weights):
    # Encode data
    qml.AngleEmbedding(x, wires=range(4))

    # Variational layers
    qml.StronglyEntanglingLayers(weights, wires=range(4))

    return qml.expval(qml.PauliZ(0))

# 2. Train
opt = qml.AdamOptimizer(stepsize=0.01)
weights = np.random.random((3, 4, 3))  # 3 layers, 4 wires

for epoch in range(100):
    for x, y in zip(X_train, y_train):
        weights = opt.step(lambda w: (classifier(x, w) - y)**2, weights)

Run VQE for Molecular Ground State

from pennylane import qchem

# 1. Build Hamiltonian
symbols = ['H', 'H']
coords = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.74])
H, n_qubits = qchem.molecular_hamiltonian(symbols, coords)

# 2. Define ansatz
@qml.qnode(dev)
def vqe_circuit(params):
    qml.BasisState(qchem.hf_state(2, n_qubits), wires=range(n_qubits))
    qml.UCCSD(params, wires=range(n_qubits))
    return qml.expval(H)

# 3. Optimize
opt = qml.AdamOptimizer(stepsize=0.1)
params = np.zeros(10, requires_grad=True)

for i in range(100):
    params, energy = opt.step_and_cost(vqe_circuit, params)
    print(f"Step {i}: Energy = {energy:.6f} Ha")

Switch Between Devices

# Same circuit, different backends
circuit_def = lambda dev: qml.qnode(dev)(circuit_function)

# Test on simulator
dev_sim = qml.device('default.qubit', wires=4)
result_sim = circuit_def(dev_sim)(params)

# Run on quantum hardware
dev_hw = qml.device('qiskit.ibmq', wires=4, backend='ibmq_manila')
result_hw = circuit_def(dev_hw)(params)

Detailed Documentation

For comprehensive coverage of specific topics, consult the reference files:

  • Getting started: references/getting_started.md - Installation, basic concepts, first steps
  • Quantum circuits: references/quantum_circuits.md - Gates, measurements, circuit patterns
  • Quantum ML: references/quantum_ml.md - Hybrid models, framework integration, QNNs
  • Quantum chemistry: references/quantum_chemistry.md - VQE, molecular Hamiltonians, chemistry workflows
  • Devices: references/devices_backends.md - Simulators, hardware plugins, device configuration
  • Optimization: references/optimization.md - Optimizers, gradients, variational algorithms
  • Advanced: references/advanced_features.md - Templates, transforms, JIT compilation, noise

Best Practices

  1. Start with simulators - Test on default.qubit before deploying to hardware
  2. Use parameter-shift for hardware - Backpropagation only works on simulators
  3. Choose appropriate encodings - Match data encoding to problem structure
  4. Initialize carefully - Use small random values to avoid barren plateaus
  5. Monitor gradients - Check for vanishing gradients in deep circuits
  6. Cache devices - Reuse device objects to reduce initialization overhead
  7. Profile circuits - Use qml.specs() to analyze circuit complexity
  8. Test locally - Validate on simulators before submitting to hardware
  9. Use templates - Leverage built-in templates for common circuit patterns
  10. Compile when possible - Use Catalyst JIT for performance-critical code

Resources