Good AI Tools

>> scientific-skills/plotly

stars: 1935
forks: 230
watches: 1935
last updated: 2025-12-10 15:59:01

Plotly

Python graphing library for creating interactive, publication-quality visualizations with 40+ chart types.

Quick Start

Install Plotly:

uv pip install plotly

Basic usage with Plotly Express (high-level API):

import plotly.express as px
import pandas as pd

df = pd.DataFrame({
    'x': [1, 2, 3, 4],
    'y': [10, 11, 12, 13]
})

fig = px.scatter(df, x='x', y='y', title='My First Plot')
fig.show()

Choosing Between APIs

Use Plotly Express (px)

For quick, standard visualizations with sensible defaults:

  • Working with pandas DataFrames
  • Creating common chart types (scatter, line, bar, histogram, etc.)
  • Need automatic color encoding and legends
  • Want minimal code (1-5 lines)

See reference/plotly-express.md for complete guide.

Use Graph Objects (go)

For fine-grained control and custom visualizations:

  • Chart types not in Plotly Express (3D mesh, isosurface, complex financial charts)
  • Building complex multi-trace figures from scratch
  • Need precise control over individual components
  • Creating specialized visualizations with custom shapes and annotations

See reference/graph-objects.md for complete guide.

Note: Plotly Express returns graph objects Figure, so you can combine approaches:

fig = px.scatter(df, x='x', y='y')
fig.update_layout(title='Custom Title')  # Use go methods on px figure
fig.add_hline(y=10)                     # Add shapes

Core Capabilities

1. Chart Types

Plotly supports 40+ chart types organized into categories:

Basic Charts: scatter, line, bar, pie, area, bubble

Statistical Charts: histogram, box plot, violin, distribution, error bars

Scientific Charts: heatmap, contour, ternary, image display

Financial Charts: candlestick, OHLC, waterfall, funnel, time series

Maps: scatter maps, choropleth, density maps (geographic visualization)

3D Charts: scatter3d, surface, mesh, cone, volume

Specialized: sunburst, treemap, sankey, parallel coordinates, gauge

For detailed examples and usage of all chart types, see reference/chart-types.md.

2. Layouts and Styling

Subplots: Create multi-plot figures with shared axes:

from plotly.subplots import make_subplots
import plotly.graph_objects as go

fig = make_subplots(rows=2, cols=2, subplot_titles=('A', 'B', 'C', 'D'))
fig.add_trace(go.Scatter(x=[1, 2], y=[3, 4]), row=1, col=1)

Templates: Apply coordinated styling:

fig = px.scatter(df, x='x', y='y', template='plotly_dark')
# Built-in: plotly_white, plotly_dark, ggplot2, seaborn, simple_white

Customization: Control every aspect of appearance:

  • Colors (discrete sequences, continuous scales)
  • Fonts and text
  • Axes (ranges, ticks, grids)
  • Legends
  • Margins and sizing
  • Annotations and shapes

For complete layout and styling options, see reference/layouts-styling.md.

3. Interactivity

Built-in interactive features:

  • Hover tooltips with customizable data
  • Pan and zoom
  • Legend toggling
  • Box/lasso selection
  • Rangesliders for time series
  • Buttons and dropdowns
  • Animations
# Custom hover template
fig.update_traces(
    hovertemplate='<b>%{x}</b><br>Value: %{y:.2f}<extra></extra>'
)

# Add rangeslider
fig.update_xaxes(rangeslider_visible=True)

# Animations
fig = px.scatter(df, x='x', y='y', animation_frame='year')

For complete interactivity guide, see reference/export-interactivity.md.

4. Export Options

Interactive HTML:

fig.write_html('chart.html')                       # Full standalone
fig.write_html('chart.html', include_plotlyjs='cdn')  # Smaller file

Static Images (requires kaleido):

uv pip install kaleido
fig.write_image('chart.png')   # PNG
fig.write_image('chart.pdf')   # PDF
fig.write_image('chart.svg')   # SVG

For complete export options, see reference/export-interactivity.md.

Common Workflows

Scientific Data Visualization

import plotly.express as px

# Scatter plot with trendline
fig = px.scatter(df, x='temperature', y='yield', trendline='ols')

# Heatmap from matrix
fig = px.imshow(correlation_matrix, text_auto=True, color_continuous_scale='RdBu')

# 3D surface plot
import plotly.graph_objects as go
fig = go.Figure(data=[go.Surface(z=z_data, x=x_data, y=y_data)])

Statistical Analysis

# Distribution comparison
fig = px.histogram(df, x='values', color='group', marginal='box', nbins=30)

# Box plot with all points
fig = px.box(df, x='category', y='value', points='all')

# Violin plot
fig = px.violin(df, x='group', y='measurement', box=True)

Time Series and Financial

# Time series with rangeslider
fig = px.line(df, x='date', y='price')
fig.update_xaxes(rangeslider_visible=True)

# Candlestick chart
import plotly.graph_objects as go
fig = go.Figure(data=[go.Candlestick(
    x=df['date'],
    open=df['open'],
    high=df['high'],
    low=df['low'],
    close=df['close']
)])

Multi-Plot Dashboards

from plotly.subplots import make_subplots
import plotly.graph_objects as go

fig = make_subplots(
    rows=2, cols=2,
    subplot_titles=('Scatter', 'Bar', 'Histogram', 'Box'),
    specs=[[{'type': 'scatter'}, {'type': 'bar'}],
           [{'type': 'histogram'}, {'type': 'box'}]]
)

fig.add_trace(go.Scatter(x=[1, 2, 3], y=[4, 5, 6]), row=1, col=1)
fig.add_trace(go.Bar(x=['A', 'B'], y=[1, 2]), row=1, col=2)
fig.add_trace(go.Histogram(x=data), row=2, col=1)
fig.add_trace(go.Box(y=data), row=2, col=2)

fig.update_layout(height=800, showlegend=False)

Integration with Dash

For interactive web applications, use Dash (Plotly's web app framework):

uv pip install dash
import dash
from dash import dcc, html
import plotly.express as px

app = dash.Dash(__name__)

fig = px.scatter(df, x='x', y='y')

app.layout = html.Div([
    html.H1('Dashboard'),
    dcc.Graph(figure=fig)
])

app.run_server(debug=True)

Reference Files

Additional Resources