>> scientific-skills/pennylane
PennyLane
Overview
PennyLane is a quantum computing library that enables training quantum computers like neural networks. It provides automatic differentiation of quantum circuits, device-independent programming, and seamless integration with classical machine learning frameworks.
Installation
Install using uv:
uv pip install pennylane
For quantum hardware access, install device plugins:
# IBM Quantum
uv pip install pennylane-qiskit
# Amazon Braket
uv pip install amazon-braket-pennylane-plugin
# Google Cirq
uv pip install pennylane-cirq
# Rigetti Forest
uv pip install pennylane-rigetti
# IonQ
uv pip install pennylane-ionq
Quick Start
Build a quantum circuit and optimize its parameters:
import pennylane as qml
from pennylane import numpy as np
# Create device
dev = qml.device('default.qubit', wires=2)
# Define quantum circuit
@qml.qnode(dev)
def circuit(params):
qml.RX(params[0], wires=0)
qml.RY(params[1], wires=1)
qml.CNOT(wires=[0, 1])
return qml.expval(qml.PauliZ(0))
# Optimize parameters
opt = qml.GradientDescentOptimizer(stepsize=0.1)
params = np.array([0.1, 0.2], requires_grad=True)
for i in range(100):
params = opt.step(circuit, params)
Core Capabilities
1. Quantum Circuit Construction
Build circuits with gates, measurements, and state preparation. See references/quantum_circuits.md for:
- Single and multi-qubit gates
- Controlled operations and conditional logic
- Mid-circuit measurements and adaptive circuits
- Various measurement types (expectation, probability, samples)
- Circuit inspection and debugging
2. Quantum Machine Learning
Create hybrid quantum-classical models. See references/quantum_ml.md for:
- Integration with PyTorch, JAX, TensorFlow
- Quantum neural networks and variational classifiers
- Data encoding strategies (angle, amplitude, basis, IQP)
- Training hybrid models with backpropagation
- Transfer learning with quantum circuits
3. Quantum Chemistry
Simulate molecules and compute ground state energies. See references/quantum_chemistry.md for:
- Molecular Hamiltonian generation
- Variational Quantum Eigensolver (VQE)
- UCCSD ansatz for chemistry
- Geometry optimization and dissociation curves
- Molecular property calculations
4. Device Management
Execute on simulators or quantum hardware. See references/devices_backends.md for:
- Built-in simulators (default.qubit, lightning.qubit, default.mixed)
- Hardware plugins (IBM, Amazon Braket, Google, Rigetti, IonQ)
- Device selection and configuration
- Performance optimization and caching
- GPU acceleration and JIT compilation
5. Optimization
Train quantum circuits with various optimizers. See references/optimization.md for:
- Built-in optimizers (Adam, gradient descent, momentum, RMSProp)
- Gradient computation methods (backprop, parameter-shift, adjoint)
- Variational algorithms (VQE, QAOA)
- Training strategies (learning rate schedules, mini-batches)
- Handling barren plateaus and local minima
6. Advanced Features
Leverage templates, transforms, and compilation. See references/advanced_features.md for:
- Circuit templates and layers
- Transforms and circuit optimization
- Pulse-level programming
- Catalyst JIT compilation
- Noise models and error mitigation
- Resource estimation
Common Workflows
Train a Variational Classifier
# 1. Define ansatz
@qml.qnode(dev)
def classifier(x, weights):
# Encode data
qml.AngleEmbedding(x, wires=range(4))
# Variational layers
qml.StronglyEntanglingLayers(weights, wires=range(4))
return qml.expval(qml.PauliZ(0))
# 2. Train
opt = qml.AdamOptimizer(stepsize=0.01)
weights = np.random.random((3, 4, 3)) # 3 layers, 4 wires
for epoch in range(100):
for x, y in zip(X_train, y_train):
weights = opt.step(lambda w: (classifier(x, w) - y)**2, weights)
Run VQE for Molecular Ground State
from pennylane import qchem
# 1. Build Hamiltonian
symbols = ['H', 'H']
coords = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.74])
H, n_qubits = qchem.molecular_hamiltonian(symbols, coords)
# 2. Define ansatz
@qml.qnode(dev)
def vqe_circuit(params):
qml.BasisState(qchem.hf_state(2, n_qubits), wires=range(n_qubits))
qml.UCCSD(params, wires=range(n_qubits))
return qml.expval(H)
# 3. Optimize
opt = qml.AdamOptimizer(stepsize=0.1)
params = np.zeros(10, requires_grad=True)
for i in range(100):
params, energy = opt.step_and_cost(vqe_circuit, params)
print(f"Step {i}: Energy = {energy:.6f} Ha")
Switch Between Devices
# Same circuit, different backends
circuit_def = lambda dev: qml.qnode(dev)(circuit_function)
# Test on simulator
dev_sim = qml.device('default.qubit', wires=4)
result_sim = circuit_def(dev_sim)(params)
# Run on quantum hardware
dev_hw = qml.device('qiskit.ibmq', wires=4, backend='ibmq_manila')
result_hw = circuit_def(dev_hw)(params)
Detailed Documentation
For comprehensive coverage of specific topics, consult the reference files:
- Getting started:
references/getting_started.md- Installation, basic concepts, first steps - Quantum circuits:
references/quantum_circuits.md- Gates, measurements, circuit patterns - Quantum ML:
references/quantum_ml.md- Hybrid models, framework integration, QNNs - Quantum chemistry:
references/quantum_chemistry.md- VQE, molecular Hamiltonians, chemistry workflows - Devices:
references/devices_backends.md- Simulators, hardware plugins, device configuration - Optimization:
references/optimization.md- Optimizers, gradients, variational algorithms - Advanced:
references/advanced_features.md- Templates, transforms, JIT compilation, noise
Best Practices
- Start with simulators - Test on
default.qubitbefore deploying to hardware - Use parameter-shift for hardware - Backpropagation only works on simulators
- Choose appropriate encodings - Match data encoding to problem structure
- Initialize carefully - Use small random values to avoid barren plateaus
- Monitor gradients - Check for vanishing gradients in deep circuits
- Cache devices - Reuse device objects to reduce initialization overhead
- Profile circuits - Use
qml.specs()to analyze circuit complexity - Test locally - Validate on simulators before submitting to hardware
- Use templates - Leverage built-in templates for common circuit patterns
- Compile when possible - Use Catalyst JIT for performance-critical code
Resources
- Official documentation: https://docs.pennylane.ai
- Codebook (tutorials): https://pennylane.ai/codebook
- QML demonstrations: https://pennylane.ai/qml/demonstrations
- Community forum: https://discuss.pennylane.ai
- GitHub: https://github.com/PennyLaneAI/pennylane
