product-design
Complete framework for context-efficient AI development - Philosophy, Metrics, Education, Skills, and Agents. Master context engineering principles through interactive learning. Achieve 92% token reduction with proven strategies.
- Click install button to copy plugin bin to clipboard.
- Open your claude app and paste the plugin bin to install the skill.
Product Design Skill
Automate design handoff from Figma to code with design system intelligence. Extract tokens, map components, detect drift, generate implementation plans.
When to Invoke
Auto-invoke when user says:
- "Review this design"
- "Analyze Figma mockup"
- "Design handoff for [feature]"
- "Check design system impact"
- "Plan implementation for design"
- "Extract tokens from Figma"
- "What changed in the design?"
What This Does
5-Step Workflow:
- Design Analysis: Extract patterns, components, tokens from Figma
- Codebase Audit: Compare design vs implementation, find drift
- Implementation Planning: Generate phased task breakdown
- Task Assignment: Create Navigator task document
- Handoff: Ask user to review or start implementation
Time Savings: 6-10 hours → 15-20 minutes (95% reduction)
Prerequisites
Required
-
Python Dependencies
cd skills/product-design ./setup.sh # Automated installation # OR manually: pip install -r requirements.txt -
Figma Desktop (for automated workflow)
- Download: https://www.figma.com/downloads/
- Enable MCP: Figma → Preferences → Enable local MCP Server
- Must be running during design reviews
-
Project Structure
.agent/design-system/directory (created on first run)- Project with components (React/Vue/Svelte)
Optional (Enhanced Features)
- Figma Enterprise: Code Connect for automatic component mapping
- Tailwind CSS: Design token integration via @theme
- Storybook: Component documentation and visual regression
Installation
Quick start:
cd skills/product-design
./setup.sh
See INSTALL.md for detailed installation guide and troubleshooting.
Workflow Protocol
Step 0: Check Setup (Auto-Run)
Before starting, verify Python dependencies installed:
# Get Navigator plugin path
PLUGIN_PATH=$(dirname "$(dirname "$(dirname "$PWD")")")
# Check if venv exists
if [ ! -d "$PLUGIN_PATH/skills/product-design/venv" ]; then
echo "❌ product-design skill not set up"
echo ""
echo "Run setup (30 seconds):"
echo " cd $PLUGIN_PATH/skills/product-design && ./setup.sh"
echo ""
echo "Or use manual workflow (no Python needed)"
exit 1
fi
If setup missing:
- Show setup instructions
- Offer manual workflow as alternative
- Do not proceed with automated Figma workflow
If setup complete:
- Continue to Step 1 (Design Analysis)
Step 1: Design Analysis
Objective: Extract design patterns from Figma or manual description
With Figma MCP (Automated) ✨ SIMPLIFIED
New Architecture (v1.1.0+): Python directly connects to Figma MCP - no manual orchestration!
# Python functions now handle MCP connection automatically
from figma_mcp_client import FigmaMCPClient
async with FigmaMCPClient() as client:
# Progressive refinement - fetch only what's needed
metadata = await client.get_metadata()
components = extract_components(metadata)
# Fetch details only for complex components
for comp in components:
if comp['complexity'] == 'high':
comp['detail'] = await client.get_design_context(comp['id'])
# Get design tokens
variables = await client.get_variable_defs()
Workflow (fully automated):
- User provides Figma URL
- Run
python3 functions/design_analyzer.py --figma-url <URL> - Python connects to Figma MCP (http://127.0.0.1:3845/mcp)
- Fetches metadata → analyzes → fetches details only if needed
- Returns complete analysis
Benefits:
- ✅ No manual MCP tool calls by Claude
- ✅ Progressive refinement (smart token usage)
- ✅ Automatic connection management
- ✅ Built-in error handling
Requirements:
- Figma Desktop running
- MCP enabled in preferences
- Python dependencies installed (
./setup.sh)
Manual Workflow (No MCP)
**Ask user for design information**:
What is the feature name? [e.g., "Dashboard Redesign"]
Figma link (optional): [figma.com/file/...]
**Design Tokens**:
List new or modified tokens:
- Colors (name: value, e.g., "primary-600: #2563EB")
- Spacing (e.g., "spacing-lg: 24px")
- Typography (e.g., "heading-xl: 36px/600")
- Other (radius, shadow, etc.)
**Components**:
List components in design:
- Component name
- Type (atom, molecule, organism)
- Variants (if any, e.g., "Button: primary/secondary, sm/md/lg")
- Similar to existing component? (name if known)
**Proceed to Step 2** after gathering information
Run design_analyzer.py
# Prepare input (MCP or manual JSON)
# MCP: Already have /tmp/figma_metadata.json
# Manual: Create JSON from user input
python3 functions/design_analyzer.py \
--figma-data /tmp/figma_combined.json \
--ui-kit-inventory .agent/design-system/ui-kit-inventory.json \
--output /tmp/analysis_results.json
Analysis Output:
- New components not in UI kit
- Similar components (reuse opportunities)
- New design tokens
- Breaking changes (if any)
Step 2: Codebase Audit
Objective: Compare design vs implementation, detect drift
Token Extraction
python3 functions/token_extractor.py \
--figma-variables /tmp/figma_variables.json \
--existing-tokens .agent/design-system/design-tokens.json \
--output /tmp/token_extraction.json
Output: DTCG formatted tokens + diff summary
Component Mapping
python3 functions/component_mapper.py \
--figma-components /tmp/analysis_results.json \
--code-connect-map /tmp/figma_code_connect.json \
--project-root . \
--output /tmp/component_mappings.json
Output: Figma component → code component mappings with confidence scores
Design System Audit
# Combine data for auditor
python3 functions/design_system_auditor.py \
--figma-data /tmp/combined_figma.json \
--code-data /tmp/combined_code.json \
--output /tmp/audit_results.json
Audit Results:
- Token alignment (in sync, drift, missing, unused)
- Component reuse opportunities
- Tailwind config recommendations
- Priority level (critical, high, medium, low)
Step 3: Implementation Planning
Objective: Generate phased implementation task document
Generate Task Document
python3 functions/implementation_planner.py \
--task-id "TASK-{{next_task_number}}" \
--feature-name "{{feature_name}}" \
--analysis-results /tmp/combined_analysis.json \
--review-reference ".agent/design-system/reviews/{{date}}-{{feature-slug}}.md" \
--output .agent/tasks/TASK-{{next_task_number}}-{{feature-slug}}.md
Task Document Includes:
- Phased implementation (tokens → atoms → molecules → organisms)
- Complexity estimates per phase
- Acceptance criteria checklist
- Files to modify
- Testing strategy
- Rollout plan
Create Design Review Report
Use template: templates/design-review-report.md
Save to: .agent/design-system/reviews/YYYY-MM-DD-{{feature-name}}.md
Contents:
- Design analysis summary
- Token changes (added/modified/removed)
- Component changes (new/extended/breaking)
- Design system impact
- Implementation recommendations
Step 4: Task Assignment
Objective: Create task and assign context for implementation
Create PM Ticket (if configured)
**If PM tool configured** (Linear, GitHub Issues, Jira):
- Create ticket with task summary
- Link to task document and design review
- Assign to frontend developer or team
**If no PM tool**:
- Skip ticket creation
- Task document serves as source of truth
Update Navigator Documentation
**Update files**:
1. `.agent/tasks/TASK-{{number}}-{{feature}}.md` (created in Step 3)
2. `.agent/design-system/reviews/{{date}}-{{feature}}.md` (design review)
3. `.agent/DEVELOPMENT-README.md` (add task to index)
**Use TodoWrite** to track implementation phases
Step 5: Implementation Handoff
Objective: Present results and get user decision
Present Summary
✅ Design review complete for {{Feature Name}}
**Generated Documentation**:
- Design review: `.agent/design-system/reviews/{{date}}-{{feature}}.md`
- Implementation plan: `.agent/tasks/TASK-{{number}}-{{feature}}.md`
{{#if pm_configured}}- PM ticket: {{ticket_id}} (status: ready for development){{/if}}
**Summary**:
- Design Tokens: {{new_count}} new, {{modified_count}} modified
- Components: {{new_components}} new, {{extend_components}} to extend
- Estimated Time: {{total_hours}} hours
- Complexity: {{complexity_level}}
{{#if breaking_changes}}- ⚠️ Breaking Changes: {{breaking_count}} component(s){{/if}}
**Next Steps**:
[1] Start implementation now
[2] Review plan first (load task document)
[3] Modify plan before starting
**Recommended**: After implementation, set up visual regression testing:
"Set up visual regression for {{components}}"
This ensures pixel-perfect implementation and prevents future drift (15 min setup).
Reply with choice or "Start implementation"
User Decision Branches
If user chooses [1] or says "Start implementation":
1. Load task document: `Read .agent/tasks/TASK-{{number}}-{{feature}}.md`
2. Load design review: `Read .agent/design-system/reviews/{{date}}-{{feature}}.md`
3. Begin Phase 1 (typically design tokens)
4. Follow autonomous completion protocol when done
5. After completion, suggest: "Set up visual regression for {{components}}" (optional but recommended)
If user chooses [2]:
1. Load and display task document
2. Highlight key phases and acceptance criteria
3. Ask: "Ready to start or need changes?"
If user chooses [3]:
1. Load task document
2. Ask what modifications needed
3. Edit task document
4. Regenerate if major changes
5. Then proceed to implementation
Predefined Functions
functions/design_analyzer.py
Purpose: Extract design patterns from Figma MCP data or manual input
Usage:
python3 functions/design_analyzer.py \
--figma-data /path/to/figma_mcp_combined.json \
--ui-kit-inventory .agent/design-system/ui-kit-inventory.json \
--output /tmp/analysis.json
Input Format (figma_mcp_combined.json):
{
"metadata": { ... }, // get_metadata response
"variables": { ... }, // get_variable_defs response
"code_connect_map": { ... } // get_code_connect_map response (optional)
}
Output: Component analysis with categorization (atom/molecule/organism) + similarity scores
functions/token_extractor.py
Purpose: Convert Figma variables to DTCG format with diff
Usage:
python3 functions/token_extractor.py \
--figma-variables /path/to/figma_variables.json \
--existing-tokens .agent/design-system/design-tokens.json \
--format full \
--output /tmp/tokens.json
Output Formats:
full: DTCG tokens + diff + summarytokens-only: Just DTCG tokensdiff-only: Just diff and summary
DTCG Format (W3C Design Tokens spec):
{
"color": {
"primary": {
"500": {
"$value": "#3B82F6",
"$type": "color",
"$description": "Primary brand color"
}
}
}
}
functions/component_mapper.py
Purpose: Map Figma components to codebase components
Usage:
python3 functions/component_mapper.py \
--figma-components /path/to/analysis_results.json \
--code-connect-map /path/to/code_connect.json \
--project-root . \
--output /tmp/mappings.json
Mapping Strategy:
- Code Connect first (100% confidence)
- Fuzzy name matching (70%+ confidence)
- Unmapped = needs creation
Output: Mappings with confidence scores + variant prop mapping
functions/design_system_auditor.py
Purpose: Audit design system for drift and reuse opportunities
Usage:
python3 functions/design_system_auditor.py \
--figma-data /path/to/combined_figma.json \
--code-data /path/to/combined_code.json \
--output /tmp/audit.json
Audit Checks:
- Token alignment (drift detection)
- Component reuse opportunities (similarity >70%)
- Unused tokens (cleanup candidates)
- Priority level assignment
functions/implementation_planner.py
Purpose: Generate Navigator task document with phased breakdown
Usage:
python3 functions/implementation_planner.py \
--task-id "TASK-16" \
--feature-name "Dashboard Redesign" \
--analysis-results /path/to/combined_analysis.json \
--review-reference ".agent/design-system/reviews/2025-10-21-dashboard.md" \
--output .agent/tasks/TASK-16-dashboard-redesign.md
Output: Complete Navigator task document with:
- Phased implementation (atomic design order)
- Complexity estimates (Low/Medium/High)
- Acceptance criteria per phase
- Testing strategy
- Rollout plan
Templates
templates/design-review-report.md
When: Step 3 - Creating design review documentation
Structure:
# Design Review: {{Feature Name}}
**Date**: {{YYYY-MM-DD}}
**Figma**: [Link]({{figma_url}})
**Reviewer**: Navigator Product Design Skill
## New Design Tokens
[Token changes]
## New Components Required
[Component list with categories]
## Design System Impact
[High/Medium/Low impact analysis]
## Implementation Recommendations
[Phased approach]
Design System Documentation Structure
Initial Setup (First Run)
mkdir -p .agent/design-system/reviews
# Create initial files
touch .agent/design-system/design-tokens.json
touch .agent/design-system/ui-kit-inventory.json
touch .agent/design-system/component-mapping.json
design-tokens.json (DTCG format):
{
"color": {},
"spacing": {},
"typography": {},
"radius": {},
"shadow": {}
}
ui-kit-inventory.json:
{
"components": [
{
"name": "Button",
"path": "src/components/ui/Button.tsx",
"category": "atom",
"variants": ["primary", "secondary", "ghost"],
"figma_link": "..."
}
],
"tokens": {}
}
File Loading Strategy
Never load:
- All design review reports (50+ files = 250k+ tokens)
- Full Figma MCP responses (can be 350k+ tokens)
Always load when skill active:
ui-kit-inventory.json(~3k tokens)design-tokens.json(~2k tokens)- Specific design review for current task (~5k tokens)
Total: ~10k tokens vs 150k+ (93% reduction)
Figma MCP Integration
MCP Server Detection
On skill invocation:
- Check for Figma MCP tools availability
- Detect local vs remote server
- Adjust workflow based on capabilities
Local Server (Recommended):
- URL:
http://127.0.0.1:3845/mcp - Tools: All (metadata, variables, code_connect, design_context)
- Requires: Figma Desktop app running
Remote Server (Fallback):
- URL:
https://mcp.figma.com/mcp - Tools: Limited (no code_connect, requires explicit URLs)
- Requires: Internet connection, explicit Figma links
Handling Token Limits
Problem: Large screens return >350k tokens (exceeds default 25k limit)
Solution:
1. Use `get_metadata` first (sparse XML, ~5k tokens)
2. Parse metadata to identify component node IDs
3. Fetch components individually via `get_design_context`
4. Aggregate results from multiple small calls
**Environment Variable** (recommended):
export MAX_MCP_OUTPUT_TOKENS=100000
MCP Tool Usage
get_metadata: Always first for large designs
- Returns sparse XML with node IDs, types, names
- Low token cost (~5-10k)
- Use to plan component extraction strategy
get_variable_defs: Extract all design tokens
- One call gets all variables
- Moderate token cost (~10-20k)
- Critical for token extraction
get_code_connect_map: Get component mappings
- Requires Figma Enterprise plan
- Returns node_id → code_path mappings
- Highest confidence mappings
get_design_context: Extract component code
- Use per-component (NOT full screen)
- Can generate React/Vue/HTML via prompting
- Highest token cost - use sparingly
Tailwind CSS Integration
Design Tokens → Tailwind @theme
Style Dictionary Pipeline:
# 1. Tokens extracted to design-tokens.json (DTCG format)
# 2. Run Style Dictionary build
npx style-dictionary build
# 3. Generates tailwind-tokens.css
# @theme {
# --color-primary-500: #3B82F6;
# --spacing-md: 16px;
# }
# 4. Tailwind auto-generates utilities
# .bg-primary-500, .p-md, etc.
Figma Auto Layout → Tailwind Classes
Translation Rules (apply during code generation):
Direction:
Horizontal → flex-row
Vertical → flex-col
Spacing:
Gap → gap-{token}
Padding → p-{token}, px-{token}, py-{token}
Alignment:
Start → items-start, justify-start
Center → items-center, justify-center
Space Between → justify-between
Sizing:
Hug → w-auto / h-auto
Fill → flex-1
Fixed → w-{value} / h-{value}
Token Optimization
Navigator Principles
Load on demand:
- Design review for current task only
- UI kit inventory (always needed)
- Design tokens (always needed)
Use Task agent for codebase searches:
- Finding all component files (60-80% token savings)
- Searching for token usage in Tailwind config
- Analyzing component variant patterns
Compact after completion:
- Clear context after design review
- Preserve task document in marker
- Clean slate for implementation
Troubleshooting
"Figma MCP tool not found"
Issue: MCP server not available
Solutions:
- Check Figma Desktop app is running (for local server)
- Verify MCP server added:
claude mcp add --transport http figma-desktop http://127.0.0.1:3845/mcp - Fall back to manual workflow (still provides value)
"Token limit exceeded"
Issue: get_design_context response too large
Solutions:
- Use
get_metadatafirst, then fetch components individually - Set
MAX_MCP_OUTPUT_TOKENS=100000 - Break design into smaller selections in Figma
"No components found in codebase"
Issue: component_mapper.py finds no matches
Solutions:
- Check
--project-rootpoints to correct directory - Verify component file extensions (tsx, jsx, vue)
- Check components aren't in excluded directories (node_modules)
"Design tokens not in DTCG format"
Issue: Existing tokens use legacy format
Solutions:
- Run
token_extractor.pywith--format tokens-onlyto convert - Backup existing tokens first
- Update Style Dictionary config to read DTCG format
Success Metrics
Efficiency Gains
Before: 6-10 hours per design handoff After: 15-20 minutes Savings: 95% time reduction
Quality Metrics
- Design system drift detected automatically
- 100% token consistency via automated sync
- Component reuse rate tracked
- Implementation accuracy via acceptance criteria
Example Usage
User: "Review the dashboard redesign from Figma: https://figma.com/file/..."
Navigator:
1. Checks for Figma MCP availability
2. Extracts metadata, variables, code_connect_map
3. Runs design_analyzer.py → finds 3 new components, 12 new tokens
4. Runs token_extractor.py → generates DTCG tokens, finds 5 drift issues
5. Runs component_mapper.py → maps 2 components, 1 new needed
6. Runs design_system_auditor.py → priority: HIGH (drift detected)
7. Runs implementation_planner.py → generates TASK-17 with 3 phases
8. Creates design review report
9. Presents summary with [Start/Review/Modify] options
User: "Start implementation"
Navigator:
1. Loads TASK-17 document
2. Begins Phase 1: Design Tokens
3. Updates design-tokens.json with 12 new tokens
4. Runs Style Dictionary build
5. Updates Tailwind config
6. Commits changes
7. Moves to Phase 2: StatBadge component
8. ... continues through all phases
9. Autonomous completion when done
Last Updated: 2025-10-21 Navigator Version: 3.2.0 (target) Skill Version: 1.0.0
